

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

@NEET_Physics
@IITJEE_Physics

physicsaholics.com

Links are also in the description of the video.

For Video Solution of this DPP, Click on below link

https://physicsaholics.com/home/courseDetails/50

JEE Advanced, NSEP, INPhO, IPhO Physics DPP

DPP-2 Units & Measurements: Principle of Homogeneity By Physicsaholics Team

Q) In the formula $P = P_0 e^{-\frac{hc}{x}}$, h is Planck's constant (Unit = J-s) and c is speed of light. The dimensional formula for x is

(c) $M^1L^3T^{-2}$

b) M⁰[¹70

d) M⁰L⁰T⁰

Ans. c

Solution:

.. he is in power of to, so it will be dimensionless.

Sos
$$[m] = [hc] = [h][c]$$

 $[m] = ml^2 + l$. $L + l$

Unit of h = 3.5 [h] = [J][8] $= ML^2T^2 - T$ $[h] = ML^2T^1$ [c] = LT

Q) In a book, the answer for a particular question is expressed as $b = \frac{ma}{k} \left[\sqrt{1 + \frac{2k\ell}{ma}} \right]$

here m represents mass, a represents acceleration, ℓ represents length. The unit of b should be

(a) m/s

(c) meter

(b) m/s^2

d) sec

Ans. c

$$b = \frac{mq}{K} \left(\int 1 + \frac{2kl}{mq} \right)$$

lso dimensimles

Soy
$$\left[\frac{2kl}{mq}\right] = \frac{m^2 k^2}{m^2}$$

And;
$$[b] = [ma] = [m] [a] = \frac{n}{n}$$

Q) The velocity v of a particle at time t is given by $v = at + \frac{b}{t+c}$, where a, b and c are constants. The dimensions of a, b and c are respectively:

(a) LT⁻², L and T

(b) L^2 , T and LT^2

(c) LT², LT and L

(d) L, LT and T^2

Ans. a

Solution:

$$V = at + \frac{b}{t+c}$$

And;
$$[V] = [at] = \left[\frac{b}{t+4}\right]$$

so;
$$[a+]=[V]$$

$$[a][t]=[V]$$

$$[a][t]=[V]$$

$$\begin{bmatrix} v \end{bmatrix} = \begin{bmatrix} v \end{bmatrix} \begin{bmatrix} b \end{bmatrix} = \begin{bmatrix} v \end{bmatrix} \begin{bmatrix} b \end{bmatrix} = L \begin{bmatrix} v \end{bmatrix} \begin{bmatrix}$$

Q) The time dependence of physical quantity P is given by $P = P_0 e^{-\alpha t^2 + \beta t + \gamma}$, where α , β , γ are constants and their dimensions are given by (where t is time) -

- (a) $M^0 L^0 T^{-2}$, $M^0 L^0 T^{-1}$, $M^0 L^0 T^0$
- (b) $M^0 L^{-1}, T^{-2}, M^0 L^0 T^{-1}, M^0 L^0 T$
- (c) $M^0 L^0 T^{-1}$, $M L T^{-2}$, $M^0 L^0 T^{-1}$
- (d) M, L, T, M L T^0 , $M^0 L^0 T^0$

Ans. a

So)
$$[x^2] = M^2 [x] = T^2$$

$$[x] = T^2$$

Q) If A and B are two physical quantities having different dimensions then which of the following can't denote a new physical quantity?

(a)
$$A + \frac{A^3}{B}$$
 (b) $\exp\left(-\frac{A}{B}\right)$ (c) AB^2

Ans. b

4 B have different Dimension Solution: A = will definately home

Q) A hypothetical experiment conducted to find Young's modulus Y = $\frac{T^x \tau \cos \theta}{l^3}$ where τ is torque, l is length and T is time period then find x. [Hint: Unit of Y is N/ m^2 and Torque = Force × Perpendicular distance]

(c) -1

Ans. a

Solution:

Q) While printing a book a printer made certain mistakes in the following relation.

Find the correct relation.

(y, A and x are in meter)

(a)
$$y = A \sin \omega \theta$$

(c)
$$y = A \sin (\omega t + \theta)$$

(b)
$$y = A \sin(\omega x + \theta)$$

(d)
$$y = (A/x) \sin \omega t + \theta$$

Ans. c

Solution:

- (a) $J = A \sin \omega 0$ as $\sin \omega t = Dimensionless$ 4 $[Y] = [A] = M^2 L^1 T^0$ Dimensionally connect

- $y = A \sin(\omega t + a)$ $as \sin(\omega t + a) = Dimensionless$ $as \cos(\omega t + a) = Dimensionless$
- a) 4= A sin (w++0)
 - as Sin (wt to) = Dimensionless
 - 4 [オ] = M°レ·T° 4 [共] = [A] = 上 = し。 50; [カ] オ [長]
 - so, this expensionally correct.

Q) $\int \frac{dt}{\sqrt{2at-t^2}} = a^x \sin^{-1} \left[\frac{t}{a} - 1 \right]$ The value of x is (a) 1 (c) 0

Ans. c

Q) If force $F = \frac{Ke^{-br}}{r^2}$ varies with distance r. Then write the dimensions of K and b

(a) ML^3T^{-2} , L^{-1}

(c) $ML^{-2}T^3$, L^{-2}

(b) $M^{-2}LT^{-3}$, L^{-1}

(d) $M^{-2}L^{-3}T^2$ (L^{-2}

Ans. a

Solution:

4
$$F$$
 F Y^2J Au ML^{-2} Au

Q) Let x, y and z be three physical quantities having different dimensions. Which of the following mathematical operations must be meaningless?

(a)
$$\frac{x}{y} = z$$

$$(c) x^2 y^3 = z$$

(b)
$$\frac{xy}{x+y} = z$$

(d)
$$x^2 + y^3 = z$$

Ans. b

Solution:

if n, t and z, all have differen can't must be meaningless expression.

For Video Solution of this DPP, Click on below link

https://physicsaholics.com/home/courseDetails/50

@Physicsaholics

@NEET_Physics
@IITJEE_Physics

physicsaholics.com

Links are also in the description of the video.

#