
© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI
₹3,208/mo
₹ 38,500
₹ $4,667 / \mathrm{mo}$
₹ 28,000
6 months
No cost EMI

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

12 months	₹ $2,888 / \mathrm{mo}$
No cost EMI	$+10 \%$ OFF ₹ 34,650

6 months
No cost EMI
₹ $4,200 / \mathrm{mo}$

$$
+10 \% \text { OFF ₹ } 25,200
$$

To be paid as a one-time payment
Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.

- subscribe

Rnsm
@ NEET_Physics
@IITJEE_Physics

CLICK
physicsaholics.com

@ Physicsaholics_prateek

For Video Solution of this DPP, Click on below link

https://physicsaholics.com/home/courseDetails/50

JEE Advanced, NSEP, INPhO, IPhO Physics DPP

DPP-2 Units \& Measurements: Principle of Homogeneity By Physicsaholics Team
Q) In the formula $P=P_{0} e^{-\frac{h c}{x}}$, h is Planck's constant (Unit $=\mathrm{J}-\mathrm{s}$) and c is speed of light. The dimensional formula for x is
(a) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
(c) $\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{-2}$
(b) $10211 T^{0}$
(d) M19050

Ans. c

Solution:

$$
p=p_{0} e^{-\frac{\hbar c}{x}}
$$

$\because \frac{h c}{x}$ is in power of 'c', so it will be dimensionless.

$$
\left[\frac{h c}{x}\right]=M^{0} L^{0} T^{0}
$$

50

$$
\begin{aligned}
& {[n]=[h c]=[h][c]} \\
& {[n]=M L^{2} T^{-1} \cdot L T^{-1}} \\
& {[x]=M L^{3} T^{-2} \quad \text { An g }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { unit of } h=5.5 \\
& {[h] }=[J][\delta] \\
&=M L^{2} T^{2}-T \\
& {[h] }=M L^{2} T^{-1} \\
& {[c]=L T-1 }
\end{aligned}
$$

Q) In a book, the answer for a particular question is expressed as $b=\frac{m a}{k}\left[\sqrt{1+\frac{2 k t}{m a}}\right]$ here m represents mass, a represents acceleration, ℓ represents length. The unit of b should be
(a) m / s
(c) meter
(b) m / s^{2}
(d) sec

Ans. c

Solution:

$$
b=\frac{m a}{k}\left[\sqrt{1+\frac{2 k l}{m a}}\right]
$$

as; 1 is dimensionless
so; from; $\sqrt{1+\frac{2 k l}{m^{a}}} \frac{2 k l}{m d}$ is also dimensionless as it is adding in ' 1 ' (dimensimbess)
so,

$$
\begin{aligned}
& {\left[\frac{2 k l}{m a}\right] \Rightarrow M 02 L^{0}} \\
& \left.[k]=\frac{m a}{l}\right]=M L T \\
& {[R]=M L^{\circ} T T-2}
\end{aligned}
$$

And; $[b]=\left[\frac{m a}{k}\right]=\frac{D m][a]}{[k]}=\frac{M L T^{2}}{M L^{0} T^{2}}=L^{\prime}$
$[b]=5$
so) unit of ' b ' $=$ meter As.
Q) The velocity v of a particle at time t is given $\mathrm{by} \mathrm{v}=\mathrm{at}+\frac{b}{t+c}$, where a, b and c are constants. The dimensions of a, b and c are respectively:
(a) $\mathrm{LT}^{-2}, \mathrm{~L}$ and T
(b) b^{2} Tand $E T^{2}$
(c) LT^{2}, LT and L
(d) L, LT and T ${ }^{2}$

Ans. a

Solution:

$$
v=a t+\frac{b}{t+c}
$$

From " $t+c$ "; $[t]=[c] \Rightarrow[r]=T$
And; $[v]=[a t]=\left[\frac{b}{t+c t}\right]$

$$
\begin{aligned}
& \text { so; }\left[a t^{\prime}\right]=[V]-[a][t]=[k]=[(a)] \frac{L T^{-1}}{T^{-1}}
\end{aligned}
$$

$$
\begin{aligned}
& {[a]=4 \cos ^{2},[b]=L ;[c]=T \text { An }}
\end{aligned}
$$

Q) The time dependence of physical quantity P is given by $\mathrm{P}=\mathrm{P}_{0} e^{-\alpha t^{2}+\beta t+\gamma}$, where α, β, γ are constants and their dimensions are given by (where t is time) -
(a) $\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-2}, \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}, \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
(b) $\mathrm{M}^{0} \mathrm{~L}^{-1}, \mathrm{~T}^{-2}, \mathrm{M}^{0} \mathrm{~L}^{\theta} \mathrm{T}^{-1}, \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}$
(c) $\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1} \mathrm{MB}^{-2}, \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}$
(d) $\mathrm{M}, \mathrm{L}, \mathrm{T}, \mathrm{MLL} \mathrm{T}^{0}, \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{D}^{0}$

Ans. a

Solution:

$$
P=P_{0} e^{-\alpha t^{2}+\beta t * r}
$$

as; $e^{x}=$ dimensionless

$$
[P]=\left[P_{0}\right]
$$

and power of 2,3 is $-\alpha \cdot t^{2}+\beta t+n$
so; $-\alpha t^{2} \alpha \beta t+r=$ Dimensionless
so; $\left.\left[\alpha t t^{2}\right]=[\beta t]=[\beta]\right]:$ Dimensionless $=M^{\circ} L^{\circ} T^{\circ}$
so; $[\alpha]\left[t^{2}\right]=M^{0} \alpha^{\circ} \Leftrightarrow[\alpha] T^{2}=M^{\circ} 2^{0} T^{0} \Rightarrow[\alpha]=T^{-2}$
And; $[\beta][t]=M^{0}\left[\nabla^{0} \Rightarrow[\beta] T=M^{0} L^{0} T^{0} \Rightarrow[\beta]=T^{-1}\right.$
And; $\quad r \square M M^{\circ} T^{\circ} \Rightarrow r=$ Dimensionless As
Q) If A and B are two physical quantities having different dimensions then which of the following can't denote a new physical quantity?
(a) $A+\frac{A^{3}}{B}$
(b) $\exp \left(z \frac{A}{B}\right)$
(c) AB^{2}
(d) $\frac{A}{B^{4}}$

Ans. b

Solution:
As; A \& B have different Dimensions.
so; $\quad \frac{A}{B}=$ will definately have Dimension.
so; in (b) $e^{-\left(\frac{A}{B}\right)}$ ass power eandeot have dimension, by ($\frac{A}{B}$ has Dimension.
soy Phis expression e fount denote a new Physical quantity.
Q) A hypothetical experiment conducted to find Young's modulus $\mathrm{Y}=$ $\frac{T^{x} \tau \cos \theta}{l^{3}}$ where τ is torque, l is length and T is time period then find x . [Hint: Unit of Y is $\mathrm{N} / \mathrm{m}^{2}$ and Torque $=$ Force \times Perpendicular distance]
(a) 0
(b) 1
(c) -1
(d) 2

Ans. a

Solution:
as; unit of $Y=\mathrm{N} / \mathrm{m}^{L}$
So, $[y]=\frac{M L T^{2}}{L^{2}}=M L^{-1} T^{-2} \Rightarrow D=M L^{-1} T^{-2}$

$$
\begin{aligned}
& \left.4 \tau=F \cdot \gamma_{\perp} \Rightarrow[\tau]=[F][\gamma]\right) \Rightarrow[z]=M\left[\tau T^{-2} \cdot L\right. \\
& {[l]=M^{\circ} L^{\prime} t}
\end{aligned}
$$

(o) $[y]=\frac{\left[T y^{n}[\tau]\right.}{[\mu]^{3}} \Rightarrow M E_{T}=\frac{T^{n} M L^{2} T^{-2}}{L^{3}}$

$$
\begin{aligned}
\operatorname{An} L^{-x} \pi^{-2} & =T^{x} M L^{-A}=x \\
x & =0
\end{aligned}
$$

Q) While printing a book a printer made certain mistakes in the following relation. Find the correct relation.
(y, A and x are in meter)
(a) $y=A \sin \omega \theta$
(c) $y=A \sin (\omega t+\theta)$
(b) $y=A \sin (\omega x+\theta)$
(d) $y=(A / x) \sin \omega t+\theta$

Ans. c
(c)

Solution:
as $\sin (2 \operatorname{st}+\theta)=$ Dimensionless
(a) $y=A \sin \omega \theta$
as $\sin \omega t=$ Dimersicules

$$
4[y]=[A]=M^{0} L^{1} T^{0}
$$

Dimensionally correct.
(d) $\frac{A}{2 x}=\sin (\omega t+\theta)$
(b) $y=A \cdot \sin (\omega x+\theta)$
as $\sin (y r x+\theta)=$ Dimensionless $4[y]=[A]=M^{\circ} L^{\prime} C^{R^{\circ}}$ Dimensionally correct?

$$
\begin{aligned}
& \text { as } \sin (\omega t+\theta)=\text { Dimensionless } \\
& \&[y]=M^{\circ} L^{1} \cdot T^{0} \\
& \&\left[\frac{A}{n}\right]=\frac{[A]}{[y]}=\frac{2}{L}=L^{\circ} \\
& \text { so; }[y] \neq\left[\frac{A}{x}\right]
\end{aligned}
$$

so, this expression is not dimensionally correct.
Q) $\int \frac{\mathrm{dt}}{\sqrt{2 \mathrm{at}-\mathrm{t}^{2}}}=a^{x} \sin ^{-1}\left[\frac{t}{a}-1\right]$ The value of x is
(a) 1

(c) 0
(d) 2

Ans. c

Solution:

$$
\int \frac{d t}{\sqrt{2 a t-t^{2}}}=a^{x} \sin ^{-1}\left[\frac{t}{a}-1\right]
$$

as; $\sin ^{-1}\left(\frac{t}{a}-1\right)=$ Dimensionless

$$
\begin{aligned}
& d t=\text { change in time }][d t]]=M^{0} L^{0} T \\
& {[2 a t]=\left[t^{2}\right] \Rightarrow[a][t]=\left[t^{2}\right] \Rightarrow[a]=[t] \Rightarrow[a]=M^{0} L^{0} T^{1}} \\
& 4[2 a t]=\left[t^{2}\right]=a^{\circ} L^{0} T^{2}
\end{aligned}
$$

so,

$$
\begin{aligned}
& {[2 a t]=\left[t^{2}\right]=a^{0} 2^{0} T^{2}} \\
& \frac{d t}{\sqrt{2 a t-t^{2}}}=[a]^{x} \Rightarrow \frac{[d t]}{\left[2 a t-t^{2}\right]^{x_{2}}}=[a]^{x}
\end{aligned}
$$

$$
\frac{\pi}{\left[T T^{2}\right]^{T / 2}}=[T]^{x} \Rightarrow \frac{T}{T}=[T]^{x}
$$

$$
\Rightarrow T^{0}=[T]^{x} \Rightarrow x=0 \text { Ax }
$$

Q) If force $\mathrm{F}=\frac{K e^{-b r}}{r^{2}}$ varies with distance r . Then write the dimensions of K and b

$$
\begin{aligned}
& \text { (a) } \mathrm{ML}^{3} \mathrm{~T}^{-2}, \mathrm{~L}^{-1} \\
& \text { (c) } \mathrm{ML}^{-2} \mathrm{~T}^{3}, \mathrm{~L}^{-2}
\end{aligned}
$$

(b) $\mathrm{M}^{-2} \mathrm{LT}^{-3}$,
(d) $\mathrm{M}^{-2} \mathrm{~L}^{-3} \mathrm{~T}^{2}, \mathrm{~L}^{-2}$

Ans. a

Solution:

$$
F=\frac{k e^{-b^{\gamma}}}{r^{2}}
$$

as; $e^{-b r}$ und br are dimgenionless (S

$$
\begin{aligned}
& \Rightarrow[b r]=[b][r]=\min ^{\circ} 0^{\circ} \Rightarrow[b] 4=M^{2} c^{\circ} T^{\circ} \\
& \text { C } D=\mathrm{m}^{-6} \mathrm{~L}^{-1} \mathrm{~T}_{0}^{0}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{5}[k]=M L^{3} T^{-2} \text { 些 }
\end{aligned}
$$

Q) Let x, y and z be three physical quantities having different dimensions. Which of the following mathematical operations must be meaningless?
(a) $\frac{x}{y}=z$
(c) $x^{2} y^{3}=z$
(b) $\frac{x y}{x+y}=z$
(d) $x^{2}+x^{3}=2$

Ans. b

Solution:

If x, y and z, all have different dimensions.
So; $x, y 4 z$ cant be added and subtracted directly.
x^{a} \& y^{0} may hame some dimension
for 1 expression (d.) $x^{a}+y^{3}=2$ may of may not be correct
But (b) $\frac{x y}{x+y}=?$ in $4 y$ can't be added.
sol (b) $\frac{x y}{x+y}=z$ must be meaningless expression.

Ane

For Video Solution of this DPP, Click on below link

https://physicsaholics.com/home/courseDetails/50

- subscribe

Rnsm
@ NEET_Physics
@IITJEE_Physics

CLICK
physicsaholics.com

@ Physicsaholics_prateek

Chalo

